Secure and Robust Identification via Classical-Quantum Channels
نویسندگان
چکیده
We study the identification capacity of classical-quantum channels (“cq-channels”), under channel uncertainty and privacy constraints. To be precise, we consider first compound memoryless cq-channels and determine their identification capacity; then we add an eavesdropper, considering compound memoryless wiretap cqq-channels, and determine their secret identification capacity. In the first case (without privacy), we find the identification capacity always equal to the transmission capacity. In the second case, we find a dichotomy: either the secrecy capacity (also known as private capacity) of the channel is zero, and then also the secrecy identification capacity is zero, or the secrecy capacity is positive and then the secrecy identification capacity equals the transmission capacity of the main channel without the wiretapper. We perform the same analysis for the case of arbitrarily varying wiretap cqq-channels (cqq-AVWC), with analogous findings, and make several observations regarding the continuity and super-additivity of the identification capacity in the latter case.
منابع مشابه
Identification via Quantum Channels
We review the development of the quantum version of Ahlswede and Dueck’s theory of identification via channels. As is often the case in quantum probability, there is not just one but several quantizations: we know at least two different concepts of identification of classical information via quantum channels, and three different identification capacities for quantum information. In the present ...
متن کاملQuantum and classical message identification via quantum channels
We discuss concepts of message identification in the sense of Ahlswede and Dueck via general quantum channels, extending investigations for classical channels, initial work for classical–quantum (cq) channels and “quantum fingerprinting”. We show that the identification capacity of a discrete memoryless quantum channel for classical information can be larger than that for transmission; this is ...
متن کاملQuantum Secure Conditional Direct Communication via Epr Pairs
Two schemes for quantum secure conditional direct communication are proposed, where a set of EPR pairs of maximally entangled particles in Bell states, initially made by the supervisor Charlie, but shared by the sender Alice and the receiver Bob, functions as quantum information channels for faithful transmission. After insuring the security of the quantum channel and obtaining the permission o...
متن کاملStrong converse for identification via quantum channels
In this paper we present a simple proof of the strong converse for identification via discrete memoryless quantum channels, based on a novel covering lemma. The new method is a generalization to quantum communication channels of Ahlswede’s recently discovered appoach to classical channels. It involves a development of explicit large deviation estimates to the case of random variables taking val...
متن کاملIdentification Via Quantum Channels in the Presence of Prior Correlation and Feedback
Continuing our earlier work (quant-ph/0401060), we give two alternative proofs of the result that a noiseless qubit channel has identification capacity 2: the first is direct by a “maximal code with random extension” argument, the second is by showing that 1 bit of entanglement (which can be generated by transmitting 1 qubit) and negligible (quantum) communication has identification capacity 2....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.09967 شماره
صفحات -
تاریخ انتشار 2018